IBS Institute for Basic Science



A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

  • Sungshin Kim
  • Research Professor
  • Neuroimaging (fMRI) and computational models of motor learning & memory
  • 031-299-4490
  • sskim0905skku.edu
  • http://clmnlab.com
  • Neuroimaging


  • Information
  • Computational Learning & Memory Neuroscience Lab


    Research interests of our lab include understanding of cognitive and neural mechanisms underlying motor learning & memory, 

    neuromodulaton ofmemory systems and development of efficient learning and rehabilitation protocols. 

    We take a combined research approach of computational modeling, psychophysical experiments, neuroimaging, and neuromodulation.

    (1) The first specific object is to investigate fundamentals of distinct memory systems related with motor learning, 

    not only procedural memory but declarative memory, which cooperatively or competitively interact as the course of acquiring new motor skills.


    (2) The second specific objective is to modulate human memory systems using noninvasive stimulation such as transcranial magnetic stimulation (TMS). 

    (3) The third specific objective s to develop more efficient learning protocols, potentially applicable to rehabilitation of patients with stroke and

    Parkinson’s disease.For this translational research, we are collaborating with clinicians in Bundang Seoul National Hospital and Samsung Medical Center. 

    Our laboratory is part of the center for neuroscience imaging research in the Institute of Basic Sciences (IBS) funded by
    the Korean government.


    Selected publication

    1. Kim S§, Nilakantan AS§, Hermiller MS, Palumbo R, Raij TA, VanHaerents SA, Voss JL*. Selective and coherent activity increases 

    due to stimulation indicate functional distinctions between episodic memory networks. Science Advances, Vol. 4, Issue 8, 2018 

    (§co-first author) 

    2. Kim S, Callier T, Bensmaia SJ*. A computational model that predicts behavioral sensitivity to intracortical microstimulation. 

    Journal of Neural Engineering, Vol. 14, Issue 1, 2013 

    3. Kim S§, Ogawa K§, Lv J, Schweighofer N*, Imamizu H. Neural substrates related to motor memory with multiple time scales in 

    sensorimotor adaptation. PLoS Biology, Vol. 13, Issue 12, 2015 (§cof-irst author)

    4. Kim SCallier T, Tabot GA, Gaunt RA, Tenore FV, Bensmaia SJ*. Behavioral assessment of sensitivity to intracortical microstimulation 

    of primate somatosensory cortex. Proceedings of National Academy of Sciences U. S. A., Vol. 112, Issue 49, 2015

    5. Kim S*, Y. Oh, N. Schweighofer. Between trial forgetting due to interference and time in motor adaptation. 

    PLoS One, Vol. 10, Issue 11, 2015 

    6. Kim S, Callier T, Tabot GA, Tenore FV, Bensmaia SJ*. Sensitivity to microstimulation of somatosensory cortex delivered 

    simultaneously through multiple electrodes. Frontiers of Systems Neuroscience, 9:47, 2015

  • Seulgi Eun
  • Researcher
  • Human neuroimaging, Cognitive neuroscience
  • PI: Seong-Gi Kim
  • eunseulgigmail.com


  • Information

  • Sangyun Kang
  • Researcher
  • PI: Eunha Baeg
  • tkddbs2618naver.com

  • Seong-Gi Kim
  • Professor
  • MR biophysics, Neuroimaging, System neuroscience
  • Department of Biomedical Engineering
  • seonggikimskku.edu
  • http://fbrainmapping.weebly.com/
  • brain mapping, MRI, neuroscience, neurovascular


  • Information

  • Functional Brain Mapping Lab



    Magnetic resonance imaging (MRI) is a very powerful non-invasive tool to visualize brain morphology, physiology, function and connectivity. However, MRI originates from water protons, thus its biological source is not straightforward. Especially, widely-used blood oxygenation-level dependent (BOLD) fMRI relies on the presumably close relationship between neural activity and hemodynamic responses. Therefore, it is crucial to understand underlying basis of fMRI for proper quantification and determining ultimate limits. Also MRI can image entire brain repeatedly from anesthetized to awake animals, and its readout can be combined with diverse manipulations such as sensory, electrical, chemical and optogenetic stimulation, and pharmacological interventions for answering system-level neural circuits. To obtain multimodal functional neuroimaging data, animal MRI facility (9.4 T and 15.2 T Bruker) is accompanied with a neurophysiology laboratory with electrophysiology, intrinsic optical imager, laser Doppler flowmeter, etc. Our research lab consisting of MR scientists and system neuroscientists focuses on three inter-related research themes; a) the development of physiological and functional MRI techniques, b) the investigation of biophysical and physiological sources of MRI signals (functional MRI, perfusion, diffusion, chemical exchange MRI), and c) the application of neuroimaging techniques to systems neuroscience research. 


    Selected Recent Publications

    1. Jin T, Wang P, Zong XP & Kim SG, “MR imaging of the Amide-Proton Transfer effect and the pH-insensitive Nuclear Overhauser Effect at 9.4 T”, Magnetic Resonance in Medicine 69: 760-770, 2013.

    2. Vazquez AV, Fukuda M, Crowley JC & Kim SG, “Neural and hemodynamic responses elicited by forelimb and photo-stimulation in  Channelrhodopsin-2 mice: Insights into the hemodynamic point-spread function”, Cerebral Cortex 24(11): 2908-2919, 2014.

    3. Jin T, Mehrens H, Hendrich KS & Kim SG, “Mapping brain glucose uptake with chemical exchange-sensitive spin-lock magnetic resonance imaging”, Journal of Cerebral Blood and Metabolism 34(8): 1402-1410, 2014.

    4. Iordanova B, Vazquez AL, Poplawsky AJ, Fukuda M, and Kim SG, “Neural and hemodynamic responses to optogenetic and sensory stimulation in the rat somatosensory cortex”,  Journal of Cerebral Blood and Metabolism 35(6): 922-932, 2015.

    5. Poplawsky AJ, Fukuda M, Murphy M & Kim SG, “Layer-specific fMRI responses to excitatory and inhibitory neuronal activities in the olfactory bulb”, J of Neurosci 35(46): 15263-15275, 2015.